2,825 research outputs found

    Matrix Product States: Symmetries and Two-Body Hamiltonians

    Full text link
    We characterize the conditions under which a translationally invariant matrix product state (MPS) is invariant under local transformations. This allows us to relate the symmetry group of a given state to the symmetry group of a simple tensor. We exploit this result in order to prove and extend a version of the Lieb-Schultz-Mattis theorem, one of the basic results in many-body physics, in the context of MPS. We illustrate the results with an exhaustive search of SU(2)--invariant two-body Hamiltonians which have such MPS as exact ground states or excitations.Comment: PDFLatex, 12 pages and 6 figure

    Exact renormalization in quantum spin chains

    Full text link
    We introduce a real-space exact renormalization group method to find exactly solvable quantum spin chains and their ground states. This method allows us to provide a complete list for exact solutions within SU(2) symmetric quantum spin chains with S≀4S\leq 4 and nearest-neighbor interactions, as well as examples with S=5. We obtain two classes of solutions: One of them converges to the fixed points of renormalization group and the ground states are matrix product states. Another one does not have renormalization fixed points and the ground states are partially ferromagnetic states.Comment: 8 pages, 5 figures, references added, published versio

    String order and symmetries in quantum spin lattices

    Get PDF
    We show that the existence of string order in a given quantum state is intimately related to the presence of a local symmetry by proving that both concepts are equivalent within the framework of finitely correlated states. Once this connection is established, we provide a complete characterization of local symmetries in these states. The results allow to understand in a straightforward way many of the properties of string order parameters, like their robustness/fragility under perturbations and their typical disappearance beyond strictly one-dimensional lattices. We propose and discuss an alternative definition, ideally suited for detecting phase transitions, and generalizations to two and more spatial dimensions.Comment: 5 pages, 1 figur

    Variabilidad de la Respuesta de las CĂ©lulas DendrĂ­ticas Estimuladas in vitro con Porphyromonas gingivalis y Aggregatibacter actinomycetemcomitans

    Get PDF
    ResumenLas cĂ©lulas dendrĂ­ticas son cĂ©lulas presentadoras de antĂ­geno capaces de inducir la activaciĂłn y maduraciĂłn de linfocitos T CD4+ vĂ­rgenes hacia un fenotipo efector especifico Th1 o Th2, dependiendo del tipo de antigeno presentado, las senales co-estimuladoras que expresan y el ambiente de citoquinas en el cual se produce la interaccion celula-celula. El objetivo del presente trabajo es analizar la respuesta de las celulas dendriticas estimuladas in vitro con distintas concentraciones de las bacterias periodontopatĂłgenas Pg y Aa. En celulas dendriticas derivadas de monocitos de sangre periferica estimuladas con 101 a 109 bacterias/mL de Pg y Aa se evaluo la expresion del marcador de maduracion CD80 mediante citometria de flujo y de las citoquinas IL1ÎČ, IL2, IL5, IL6, IL10, IL12, IL13, IFNÎł, TNFα y TNFÎČ mediante RT-PCR cuantitativa. Aa y Pg indujeron maduracion de las celulas dendriticas, detectandose significativamente mayor expresion de CD80 con la estimulacion de Aa, e indujeron predominantemente la expresion de citoquinas propias de una respuesta Th1. Dependiendo de la carga bacteriana, fueron detectados distintos umbrales de induccion de expresion de citoquinas. Aa indujo la sintesis de IL1ÎČ, IL12, IFNÎł, TNFα y TNFÎČ a menor carga bacteriana que Pg. Tomados en conjunto, estos datos nos permiten especular un mayor potencial antigenico y proyectar una mayor capacidad patogenica durante la infeccion periodontal de Aa en comparaciĂłn a Pg.AbstractDendritic cells are potent antigen-presenting cells able to prime naive T cells and polarize them towards a Th1 or Th2 response, depending on the type of the antigen presented to the TCR, the type of costimulatory signals, and the cytokine pattern in the environment. The aim of this work was to analyze the response of dendritic cells to in vitro stimulation with Pg and Aa. In monocyte-derived dendritic cells stimulated with 101 to 109 bacteria/mL of Pg or Aa were evaluated both the expression of the maturation marker CD80 by flow cytometry and the expression of the cytokines IL1ÎČ, IL2, IL5, IL6, IL10, IL12, IL13, IFNÎł, TNFα and TNFÎČ by quantitative RT-PCR. Both Pg and Aa led to dendritic cell maturation, detecting higher CD80 expression upon Aa-stimulation, and induced a Th1 pattern of cytokine expression. Aa-stimulated dendritic cells expressed IL1ÎČ, IL12, IFNÎł, TNFα and TNFÎČ mRNAs with lower bacterial charge than with Pg. Furthermore, our data indicated the existence of distinct thresholds for the induction of the different cytokines analyzed. Taken together, these data allow us to speculate a higher antigenic potential and higher pathogenic capacity of Aa than Pg during periodontal infections

    Distribution of melanopsin positive neurons in pigmented and albino mice: evidence for melanopsin interneurons in the mouse retina.

    Get PDF
    Here we have studied the population of intrinsically photosensitive retinal ganglion cells (ipRGCs) in adult pigmented and albino mice. Our data show that although pigmented (C57Bl/6) and albino (Swiss) mice have a similar total number of ipRGCs, their distribution is slightly different: while in pigmented mice ipRGCs are more abundant in the temporal retina, in albinos the ipRGCs are more abundant in superior retina. In both strains, ipRGCs are located in the retinal periphery, in the areas of lower Brn3a(+)RGC density. Both strains also contain displaced ipRGCs (d-ipRGCs) in the inner nuclear layer (INL) that account for 14% of total ipRGCs in pigmented mice and 5% in albinos. Tracing from both superior colliculli shows that 98% (pigmented) and 97% (albino) of the total ipRGCs, become retrogradely labeled, while double immunodetection of melanopsin and Brn3a confirms that few ipRGCs express this transcription factor in mice. Rather surprisingly, application of a retrograde tracer to the optic nerve (ON) labels all ipRGCs, except for a sub-population of the d-ipRGCs (14% in pigmented and 28% in albino, respectively) and melanopsin positive cells residing in the ciliary marginal zone (CMZ) of the retina. In the CMZ, between 20% (pigmented) and 24% (albino) of the melanopsin positive cells are unlabeled by the tracer and we suggest that this may be because they fail to send an axon into the ON. As such, this study provides the first evidence for a population of melanopsin interneurons in the mammalian retina

    A scenario of planet erosion by coronal radiation

    Full text link
    Context: According to theory, high-energy emission from the coronae of cool stars can severely erode the atmospheres of orbiting planets. No observational tests of the long term effects of erosion have yet been made. Aims: To analyze the current distribution of planetary mass with X-ray irradiation of the atmospheres in order to make an observational assessment of the effects of erosion by coronal radiation. Methods: We study a large sample of planet-hosting stars with XMM-Newton, Chandra and ROSAT; make a careful identification of X-ray counterparts; and fit their spectra to make accurately measurements of the stellar X-ray flux. Results: The distribution of the planetary masses with X-ray flux suggests that erosion has taken place: most surviving massive planets, (M_p sin i >1.5 M_J), have been exposed to lower accumulated irradiation. Heavy erosion during the initial stages of stellar evolution is followed by a phase of much weaker erosion. A line dividing these two phases could be present, showing a strong dependence on planet mass. Although a larger sample will be required to establish a well-defined erosion line, the distribution found is very suggestive. Conclusions: The distribution of planetary mass with X-ray flux is consistent with a scenario in which planet atmospheres have suffered the effects of erosion by coronal X-ray and EUV emission. The erosion line is an observational constraint to models of atmospheric erosion.Comment: A&A 511, L8 (2010). 4 pages, 3 figures, 1 online table (included). Language edited; corrected a wrong unit conversion (g/s -> M_J/Gyr); corrected values in column 12 of Table 1 (slightly underestimated in first version), and Figure 2 updated accordingl

    Relevance of d-D interactions on neutron and tritium production in IFMIF-EVEDA accelerator prototype

    Full text link
    In the IFMIF-EVEDA accelerator prototype, deuterium is implanted in the components due to beam losses and in the beam dump, where the beam is stopped. The interaction of the deuterons with the deuterium previously implanted leads to the production of neutrons and tritium, which are important issues for radioprotection and safety analysis. A methodology to assess these production pathways in more realistic approach has been developed. The new tools and their main achievement are: (i) an “effective diffusivity coefficient” (deduced from available experimental data) that enables simulation of the diffusion phase, and (ii) the MCUNED code (able to handle deuteron transport libraries) allows to simulate the transport-slowdown of deuteron/tritium (to get the concentration profiles) and the neutron/tritium productions from d-Cu and d-D for up to 9 MeV incident deuteron. The results with/without theses tools are presented and their effect on the relevance of d-D sources versus d-Cu is evaluated

    Estimation of the XUV radiation onto close planets and their evaporation

    Full text link
    Context: The current distribution of planet mass vs. incident stellar X-ray flux supports the idea that photoevaporation of the atmosphere may take place in close-in planets. Integrated effects have to be accounted for. A proper calculation of the mass loss rate due to photoevaporation requires to estimate the total irradiation from the whole XUV range. Aims: The purpose of this paper is to extend the analysis of the photoevaporation in planetary atmospheres from the accessible X-rays to the mostly unobserved EUV range by using the coronal models of stars to calculate the EUV contribution to the stellar spectra. The mass evolution of planets can be traced assuming that thermal losses dominate the mass loss of their atmospheres. Methods: We determine coronal models for 82 stars with exoplanets that have X-ray observations available. Then a synthetic spectrum is produced for the whole XUV range (~1-912 {\AA}). The determination of the EUV stellar flux, calibrated with real EUV data, allows us to calculate the accumulated effects of the XUV irradiation on the planet atmosphere with time, as well as the mass evolution for planets with known density. Results: We calibrate for the first time a relation of the EUV luminosity with stellar age valid for late-type stars. In a sample of 109 exoplanets, few planets with masses larger than ~1.5 Mj receive high XUV flux, suggesting that intense photoevaporation takes place in a short period of time, as previously found in X-rays. The scenario is also consistent with the observed distribution of planet masses with density. The accumulated effects of photoevaporation over time indicate that HD 209458b may have lost 0.2 Mj since an age of 20 Myr. Conclusions: Coronal radiation produces rapid photoevaporation of the atmospheres of planets close to young late-type stars. More complex models are needed to explain fully the observations.Comment: Accepted by A&A. 10 pages, 8 figures, 7 Tables (2 online). Additional online material includes 7 pages, 6 figures and 6 tables, all include

    Strongly hyperbolic Hamiltonian systems in numerical relativity: Formulation and symplectic integration

    Full text link
    We consider two strongly hyperbolic Hamiltonian formulations of general relativity and their numerical integration with a free and a partially constrained symplectic integrator. In those formulations we use hyperbolic drivers for the shift and in one case also for the densitized lapse. A system where the densitized lapse is an external field allows to enforce the momentum constraints in a holonomically constrained Hamiltonian system and to turn the Hamilton constraint function from a weak to a strong invariant. These schemes are tested in a perturbed Minkowski and the Schwarzschild space-time. In those examples we find advantages of the strongly hyperbolic formulations over the ADM system presented in [arXiv:0807.0734]. Furthermore we observe stabilizing effects of the partially constrained evolution in Schwarzschild space-time as long as the momentum constraints are enforced.Comment: This version clarifies some points concerning the interpretation of the result

    The IFMIF-EVEDA accelerator beam dump design

    Get PDF
    The IFMIF-EVEDA accelerator will be a 9 MeV, 125 mA cw deuteron accelerator prototype for verifying the validity of the 40 MeV accelerator design for IFMIF. A beam dump designed for maximum power of 1.12 MW will be used to stop the beam at the accelerator exit. The conceptual design for the IFMIF-EVEDA accelerator beam dump is based on a conical beam stop made of OFE copper. The cooling system uses an axial high velocity flow of water pressurized up to 3.4 × 105 Pa to avoid boiling. The design has been shown to be compliant with ASME mechanical design rules under nominal full power conditions. A sensitivity analysis has been performed to take into account the possible margin on the beam properties at the beam dump entrance. This analysis together with the study of the maintenance issues and the mounting and dismounting operations has led to the complete design definition
    • 

    corecore